181 research outputs found

    A needlet ILC analysis of WMAP 9-year polarisation data: CMB polarisation power spectra

    Full text link
    We estimate Cosmic Microwave Background (CMB) polarisation power spectra, and temperature-polarisation cross-spectra, from the 9-year data of the Wilkinson Microwave Anisotropy Probe (WMAP). Foreground cleaning is implemented using minimum variance linear combinations of the coefficients of needlet decompositions of sky maps for all WMAP channels, to produce maps for CMB temperature anisotropies (T-mode) and polarisation (E-mode and B-mode), for 9 different years of observation. The final power spectra are computed from averages of all possible cross-year power spectra obtained using foreground-cleaned maps for the different years. Our analysis technique yields a measurement of the EE spectrum that is in excellent agreement with theoretical expectations from the current cosmological model. By comparison, the publicly available WMAP EE power spectrum is higher on average (and significantly higher than the predicted EE spectrum from the current best fit) at scales larger than about a degree, an excess that is not confirmed by our analysis.Comment: 13 pages, 7 figures, Significantly changed version accepted for publication in MNRA

    Testing the isotropy of high energy cosmic rays using spherical needlets

    Full text link
    For many decades, ultrahigh energy charged particles of unknown origin that can be observed from the ground have been a puzzle for particle physicists and astrophysicists. As an attempt to discriminate among several possible production scenarios, astrophysicists try to test the statistical isotropy of the directions of arrival of these cosmic rays. At the highest energies, they are supposed to point toward their sources with good accuracy. However, the observations are so rare that testing the distribution of such samples of directional data on the sphere is nontrivial. In this paper, we choose a nonparametric framework that makes weak hypotheses on the alternative distributions and allows in turn to detect various and possibly unexpected forms of anisotropy. We explore two particular procedures. Both are derived from fitting the empirical distribution with wavelet expansions of densities. We use the wavelet frame introduced by [SIAM J. Math. Anal. 38 (2006b) 574-594 (electronic)], the so-called needlets. The expansions are truncated at scale indices no larger than some J{J^{\star}}, and the LpL^p distances between those estimates and the null density are computed. One family of tests (called Multiple) is based on the idea of testing the distance from the null for each choice of J=1,,JJ=1,\ldots,{J^{\star}}, whereas the so-called PlugIn approach is based on the single full J{J^{\star}} expansion, but with thresholded wavelet coefficients. We describe the practical implementation of these two procedures and compare them to other methods in the literature. As alternatives to isotropy, we consider both very simple toy models and more realistic nonisotropic models based on Physics-inspired simulations. The Monte Carlo study shows good performance of the Multiple test, even at moderate sample size, for a wide sample of alternative hypotheses and for different choices of the parameter J{J^{\star}}. On the 69 most energetic events published by the Pierre Auger Collaboration, the needlet-based procedures suggest statistical evidence for anisotropy. Using several values for the parameters of the methods, our procedures yield pp-values below 1%, but with uncontrolled multiplicity issues. The flexibility of this method and the possibility to modify it to take into account a large variety of extensions of the problem make it an interesting option for future investigation of the origin of ultrahigh energy cosmic rays.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS619 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Some sources of systematic errors on CMB polarized measurements with bolometers

    Get PDF
    Some sources of systematic errors, specific to polarized CMB measurements using bolometers, are examined. Although the evaluations we show have been made in the context of the Planck mission (and more specifically the Planck HFI), many of our conclusions are valid for other experiments as well.Comment: Contribution to the International workshop "Background Polarized Emission from Radio to Microwave Wavelengths" October 9-12, 2001, Bologna, Ital

    Foreground component separation with generalised ILC

    Full text link
    The 'Internal Linear Combination' (ILC) component separation method has been extensively used to extract a single component, the CMB, from the WMAP multifrequency data. We generalise the ILC approach for separating other millimetre astrophysical emissions. We construct in particular a multidimensional ILC filter, which can be used, for instance, to estimate the diffuse emission of a complex component originating from multiple correlated emissions, such as the total emission of the Galactic interstellar medium. The performance of such generalised ILC methods, implemented on a needlet frame, is tested on simulations of Planck mission observations, for which we successfully reconstruct a low noise estimate of emission from astrophysical foregrounds with vanishing CMB and SZ contamination.Comment: 11 pages, 6 figures (2 figures added), 1 reference added, introduction expanded, V2: version accepted by MNRA

    Optimal scan strategies for future CMB satellite experiments

    Full text link
    The B-mode polarisation power spectrum in the Cosmic Microwave Background (CMB) is about four orders of magnitude fainter than the CMB temperature power spectrum. Any instrumental imperfections that couple temperature fluctuations to B-mode polarisation must therefore be carefully controlled and/or removed. We investigate the role that a scan strategy can have in mitigating certain common systematics by averaging systematic errors down with many crossing angles. We present approximate analytic forms for the error on the recovered B-mode power spectrum that would result from differential gain, differential pointing and differential ellipticity for the case where two detector pairs are used in a polarisation experiment. We use these analytic predictions to search the parameter space of common satellite scan strategies in order to identify those features of a scan strategy that have most impact in mitigating systematic effects. As an example we go on to identify a scan strategy suitable for the CMB satellite proposed for the ESA M5 call. considering the practical considerations of fuel requirement, data rate and the relative orientation of the telescope to the earth. Having chosen a scan strategy we then go on to investigate the suitability of the scan strategy.Comment: 21 pages, 11 figures, Comments welcom

    CMB and SZ effect separation with Constrained Internal Linear Combinations

    Full text link
    The `Internal Linear Combination' (ILC) component separation method has been extensively used on the data of the WMAP space mission, to extract a single component, the CMB, from the WMAP multifrequency data. We extend the ILC approach for reconstructing millimeter astrophysical emissions beyond the CMB alone. In particular, we construct a Constrained ILC to extract clean maps of both the CMB or the thermal Sunyaev Zeldovich (SZ) effect, with vanishing contamination from the other. The performance of the Constrained ILC is tested on simulations of Planck mission observations, for which we successfully reconstruct independent estimates of the CMB and of the thermal SZ.Comment: 7 pages, 3 figures, submitted to MNRA

    Issues and methods for CMB anisotropy data reduction

    Get PDF
    Major issues and existing methods for the reduction of CMB anisotropy data are reviewed. An emphasis is put on the proper modelling of the data. It is suggested that the robustness of methods could be improved by taking into account the uncertainty of the model for finding optimal solutions.Comment: 12 pages, 4 figures, submitted to New Astronomy Review

    Impact of calibration errors on CMB component separation using FastICA and ILC

    Full text link
    The separation of emissions from different astrophysical processes is an important step towards the understanding of observational data. This topic of component separation is of particular importance in the observation of the relic Cosmic Microwave Background Radiation, as performed by the WMAP satellite and the more recent Planck mission, launched May 14th, 2009 from Kourou and currently taking data. When performing any sort of component separation, some assumptions about the components must be used. One assumption that many techniques typically use is knowledge of the frequency scaling of one or more components. This assumption may be broken in the presence of calibration errors. Here we compare, in the context of imperfect calibration, the recovery of a clean map of emission of the Cosmic Microwave Background from observational data with two methods: FastICA (which makes no assumption of the frequency scaling of the components), and an `Internal Linear Combination' (ILC), which explicitly extracts a component with a given frequency scaling. We find that even in the presence of small calibration errors with a Planck-style mission, the ILC method can lead to inaccurate CMB reconstruction in the high signal-to-noise regime, because of partial cancellation of the CMB emission in the recovered map. While there is no indication that the failure of the ILC will translate to other foreground cleaning or component separation techniques, we propose that all methods which assume knowledge of the frequency scaling of one or more components be careful to estimate the effects of calibration errors.Comment: 13 pages, 5 figure
    corecore